Emergent effects and contextual behaviours in categorical systems theory

Jules Hedges

1MSP Group, University of Strathclyde, Écosse Libre
20squares.xyz cybercat.institute

4th November 2022
NIST
Open games experience report
• Number 1 conclusion:

 Realising the promised benefits of ACT is still hard

• Need detailed and equal dialogue between theory & domain experts

• Interdisciplinary work is very costly

• Designing good abstractions will always be an art form

• Software is necessary, string diagrams software not necessary

• String diagrams may not even be the best representation!
Categorical systems theory

We often consider categories where:

- Morphisms are some kind of open systems
- Objects are their boundaries

left boundary $x \xrightarrow{f} y$ right boundary

N.b. Why a category?

- i.e. why a strict separation into left and right boundaries?

We don’t need a category! Other operad algebras work too! Categories are just convenient!
Complex systems

The composition fg is coupling along a common boundary, and yields a complex system, i.e. a system that is a complex of smaller parts.

Usually C also admits a monoidal structure\(^1\) for disjoint (non-coupling) composition.

\(^1\)Usually much more, eg. $†$-compact closed
Side remark:
As well as systems theories we also have process theories

Most of this talk still applies, replace “left boundary” and “right boundary” with input and output
To each boundary x we associate a set $B(x)$ of possible behaviours that can be observed on that boundary.

To each open system $f : x \rightarrow y$ we associate a set $B(f) \subseteq B(x) \times B(y)$

- $(a, b) \in B(f)$ means “it is possible to simultaneously observe a on the left boundary and b on the right boundary of f”

No observations can be made except on the boundary.
Behaviours compose

Suppose \(f \) and \(g \) share a common behaviour on their common boundary:

\[
(a, b) \in B(f) \text{ and } (b, c) \in B(g) \text{ for some } b \in B(y)
\]

In most situations, this implies that \((a, c) \in B(fg)\)

So:

\[
B(f)B(g) \subseteq B(fg)
\]

(LHS composition in Rel)

\[^2\text{If your behaviour doesn’t satisfy this, you should probably try something else}\]
In fancy terminology:

\[B \text{ is a lax functor}^3 \mathcal{C} \to \text{Rel} \]

- \(\mathcal{C} \) is locally discrete 2-category (exactly one 2-cell)
- Rel is a locally thin 2-category (at most one 2-cell)

\[^3 \text{Or lax pseudofunctor if being pedantic} \]
In many practical situations, the converse fails:

\(fg \) can exhibit “emergent” behaviours that do not arise from individual behaviours of \(f \) and \(g \)

Slick definition 1/3: An emergent behaviour of \(fg \) (w.r.t. the decomposition \((f, g) \)) is an element of \(B(fg) \setminus B(f)B(g) \)

So we do not have a functor \(B : C \to \text{Rel} \)

In practice: This is much less interesting
Functoriality sometimes fails very badly in real examples
Example: Open graph reachability

\[OGph = \text{structured cospan category of open graphs} \]

- Objects: finite sets
- Morphisms: cospans of graph homomorphisms

\[L(X) \xrightarrow{\iota_1} G \xleftarrow{\iota_2} L(Y) \]

\[L(-) = \text{discrete graph on a set} \]

\[^4\text{Not really systems theory, but easy to understand and easy to visualise} \]
Reachability

Define $B : \text{OGph} \to \text{Rel}$ by:

- On objects: $B(X) = X$
- On morphisms: $B(X \xrightarrow{l_1} G \xleftarrow{l_2} Y) =$

\[\{(x, y) \in X \times Y \mid \nu_1(x) \text{ and } \nu_2(y) \text{ are connected in } G\} \]

Proposition. B is a lax functor
Reachability is not a functor

Minimal counterexample: the zig-zag

\[B(f)B(g) = \emptyset \subsetneq \{(*,*)\} = B(fg) \]
Better but handwaved examples

In general, naive compositionality is not enough. Relevant effects can cut across the obvious compositional structure:

- High frequency electronics: behaviour “jumps” across the logical circuit structure between physically nearby components.
- Safety/failure analysis: catastrophic failures can cascade through physically nearby components.
- A system (e.g. an agent inside it) reasons about its situation instead of passively reacting.
Not this talk: A grand challenge

Given a lax functor to Rel\(^5\) associate some mathematical object (cohomology?) that ‘describes’ how it fails to be a functor (i.e. how the laxator fails to be an iso), in a useful way

“Useful” = encodes something worth knowing about emergent behaviour

\(^5\)Or linear/additive relations etc. as convenient
Outcomes depend on contexts too

Functional system description wiring diagram

A system interacts with a context to produce outcomes of relevance to stakeholders.

6 This slide courtesy of David Perner, University of Alabama in Huntsville, dp0101@uah.edu
The idea of contexts

Idea: a **context** is a hole into which a morphism can be put

Later we’ll make behaviours depend on both a system and a context

Standard ACT methodology: axiomatise the structure they must have, leaving freedom to do domain-specific things later
Contexts form a functor

Write $\overline{C}(X, Y)$ for the set of possible contexts for morphisms $X \to Y$

$\overline{C} : C \times C^{\text{op}} \to \text{Set}$
Generalised states

A functor $F : C \rightarrow \text{Set}$ describes a theory of \textit{generalised states} (things that can be stuck to a left boundary)\footnote{\textit{It also ought to be lax monoidal to (Set, \times)}}

An element $e \in F(X)$ behaves like a morphism $e : I \rightarrow X$

Similarly, a functor $G : C^{\text{op}} \rightarrow \text{Set}$ describes a theory of \textit{generalised costates} (things that can be stuck to a right boundary)

An element $e \in G(X)$ behaves like a morphism $e : X \rightarrow I$

A context could be a pair of these: $\mathcal{C}(X, Y) = F(X) \times G(Y)$

This describes a thing stuck to the left boundary and another (disjoint) thing stuck to the right boundary
Contexts for a monoidal category

This is less obviously described by functoriality
In particular this is **not** just a monoidal functor
An optic \((X^+, X^-) \rightarrow (Y^+, Y^-)\) in a monoidal category is a pair of morphisms like this:

\[
\text{Optic}(C)(X, Y) = \int^{A:C} C(X^+, A \otimes Y^+) \times C(A \otimes Y^-, X^-)
\]
Optic composition goes outside-in
A functor \(\text{Optic}(\mathcal{C}) \rightarrow \text{Set} \) describes things that can be stuck to the outside boundary, and can be extended like this:

\[\text{Slick definition 2/3: A context functor for a monoidal category } \mathcal{C} \text{ is a lax monoidal functor } \overline{\mathcal{C}} : \text{Optic}(\mathcal{C}) \rightarrow (\text{Set}, \times) \]
Examples of context functors

- The representable one \(^8\):
 \[
 \overline{C}(X, Y) = \text{Optic}(C)((I, I), (X, Y))
 \]
 \[
 = \int^{A:C} C(I, A \otimes X) \times C(A \otimes Y, I)
 \]

- If \(C\) is traced, \(\overline{C}(X, Y) = C(Y, X)\) is a context functor
- If \(C\) is compact closed, \(\overline{C}(X, Y) = C(I, X \otimes Y)\) is a context functor
- Domain-specific examples can be tailored to individual problems

\(^8\)Open games uses this one (where \(C\) is itself a category of optics!)
Optics can usually be avoided

Useful lemma: If \(C \) is compact closed, then \(\text{Optic}(C) \cong \text{Int}(C) \)

Int-construction\(^9\): objects are pairs, morphisms \((X^+, X^-) \rightarrow (Y^+, Y^-)\) are morphisms \(X^+ \otimes Y^- \rightarrow Y^+ \otimes X^-\)

\(^9\)Universal property: forget the compact closed structure, freely add a new one generating the same trace
How a context transforms
Pre-feature cartoon
Categorical systems theory
A theory of contexts
Contextual functors

Morphisms in context

Given:

- A monoidal category \(\mathcal{C} \) ("systems")
- A context functor \(\overline{\mathcal{C}} : \text{Optic}(\mathcal{C}) \to \text{Set} \)
- A monoidal category \(\mathcal{D} \) ("semantics")

we can form a new category \(\mathcal{D}[\overline{\mathcal{C}}] \)

- Objects are pairs \((X \in \mathcal{C}, A \in \mathcal{D}) \)
- A morphism \((X, A) \to (Y, B) \) is a pair \(f : \mathcal{C}(X, Y) \) and \(\langle -|f \rangle : \overline{\mathcal{C}}(X, Y) \to \mathcal{D}(A, B) \)

That’s a system together with a behaviour for every possible context \(^{10}\)

\(^{10}\)It looks kinda like a fibred category / Grothendieck construction, but it’s not
The yoga of contexts

\[(X, A) \xrightarrow{f, \langle -|f \rangle} (Y, B) \xrightarrow{g, \langle -|g \rangle} (Z, C)\]

We need to get a function

\[\langle -|fg \rangle : \overline{C}(X, Z) \rightarrow \mathcal{D}(A, C)\]

From \(c \in \overline{C}(X, Z)\) and \(g : \mathcal{C}(Y, Z)\) we can get \(g^*c \in \overline{C}(X, Y)\), and then \(\langle g^*c|f \rangle : \mathcal{D}(A, B)\)

From \(c \in \overline{C}(X, Z)\) and \(f : \mathcal{C}(X, Y)\) we can get \(f_*c \in \overline{C}(Y, Z)\), and then \(\langle f_*c|g \rangle : \mathcal{D}(B, C)\)

Contextual composition law: ¹¹

\[\langle c|fg \rangle = \langle g^*c|f \rangle \langle f_*c|g \rangle\]

¹¹It looks a tiny bit like a product rule for a derivation if you squint really hard
The contextual category

This rule is associative
The corresponding identity on \((X, A)\) is \(\text{id}_X\) together with

\[
\langle c | \text{id}_X \rangle = \text{id}_A \quad \text{for all} \quad c \in \overline{C}(X, X)
\]

That is: the identity system may only perform the identity behaviour, no matter what context it is in. This is not as innocent as it sounds!

\(\mathcal{D}[\overline{C}]\) is also a monoidal category - this is where we seriously use \(\text{Optic}(C)\)

Fun fact: This isolates 1 of 3 ingredients making up open games \(^{12}\)

\(^{12}\)Bonus fun fact: optics appear in compositional game theory for 2 apparently unrelated reasons !!
There’s a forgetful functor $U : \mathcal{D}[\mathcal{C}] \to \mathcal{C}$

- $U(X, A) = X$
- $U(f, \langle - | f \rangle) = f$

Slick definition 3/3: A \mathcal{C}-contextual functor $C \to D$ is a section $C \to \mathcal{D}[\mathcal{C}]$ of U
Unpacking the definition

To specify a contextual functor $\mathcal{C} \to \mathcal{D}$ is equivalently to give:

- For each object X of \mathcal{C}, an object $F(X)$ of \mathcal{D}
- For each morphism $f : \mathcal{C}(X, Y)$ and context $c \in \overline{\mathcal{C}}(X, Y)$, a morphism $\langle c | f \rangle : \mathcal{D}(F(X), F(Y))$

satisfying 2 conditions:

- (weird-unitality) $\langle c | \text{id}_X \rangle = \text{id}_{F(X)}$
- (weird-associativity) $\langle c | fg \rangle = \langle g^* c | f \rangle \langle f_* c | g \rangle$

The punchline: when I originally tried to define a “contextual functor” by brute force, this is almost the definition I came up with.

\(^{13}\) I left out the weird-unitality law, which is a headache.
It’s enough to know that some boundary nodes are connected via other components.

Idea: define $\overline{\text{OGph}} : \text{Int(OGrph)} \to \text{Set}$ by

$$\overline{\text{OGph}}(X, Y) = \{\text{partitions of } X\} \times \{\text{partitions of } Y\}$$

Work needed to check this really is a functor!

Note: I find

$$\overline{\text{OGph}}(X, Y) = \{\text{partitions of } X + Y\} = \{\text{corelations } X \to Y\}$$

more intuitive, but it goes wrong for subtle reasons.
How not to do reachability

Obvious idea: define a contextual functor $OGph \to Rel$ by

$$\langle L, R | G \rangle = \{ \text{reachability in } G \text{ after identifying } L\text{-equivalent and } R\text{-equivalent nodes} \}$$

Weird-unitality fails: $\langle L, R | \text{id} \rangle$ might not be the identity relation!

This seems to be a common phenomenon
How maybe to do reachability

Brute-forcing the problem from the previous slide:

\[\langle L, R | G \rangle = \{(x, y) \mid (x, y) \text{ reachable in } G + \text{ edges from } L, R, \text{ by a path either of length 0, or taking at least one step in } G \} \]

Bunch of fiddly combinatorics needed to prove this really is a contextual functor
Outlook

- Most importantly: actually compelling examples needed
- Normally, a functor leads to a linear time divide-and-conquer algorithm
- Contextual functors do not yield efficient algorithms!
- This is the **fundamental bamboozle of open games**: how to get “compositionality of Nash equilibria” without implying that $P = NP$
- I think this could become a standard tool of ACT (similar to decorated cospans)